令和2年度 卒業研究発表会

AIを活用した ゴミの分別と回収アシストシステム ~ 護美箱 キャシー(cache-) ~

山形県立産業技術短期大学校庄内校電子情報科

発表者

菅原 大河

冨樫 大智

齋藤 百花

2021年2月25日

チーム名: TechHack

説明内容

- 1. 背景
- 2. 課題と解決目標
- 3.システム概念図
- 4. ゴミの識別方法について
- 5. ゴミ案内について
- 6. イベント処理について
- 7. デモンストレーション
- 8. まとめ

1 背景

環境的背景

- ゴミを分別回収し、資源として活用することが必要
- ゴミの分別に悩んでしまう子供がいる

技術的背景

- 革新的サービスの創出と生産性の向上
- AI (Artificial Intelligence) の社会活用が推進されている

AIを活用しやすくなった

2 課題と解決目標

課題1

ゴミのポイ捨てや分別場所を誤ってしまう場合があり、 十分に分別できていない

解決目標

AIや音声等を使用し案内を行うことで、 どこに捨てるべきかを利用者に分かりやすく伝える

2 課題と解決目標

課題2

正しい分別場所が分からない子供が多い 子供がゴミを分別して捨てることを習慣化したい

解決目標

楽しくゴミの分別を行えるようなイベントを考え、 捨てるべき場所を指示することで分別に対する 学習をしてもらう

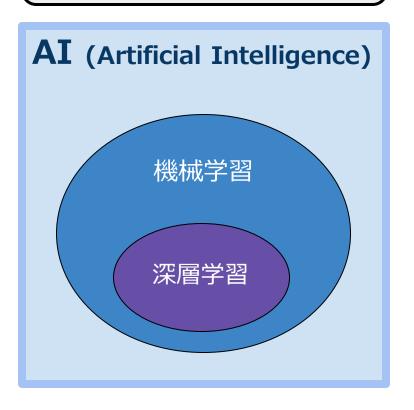
2 課題と解決目標

課題3

回収者がゴミ箱の状態を把握できておらず、 ゴミの回収に手間がかかっている

解決目標

ゴミの容量を"見える化"し、回収作業に役立つ機能を搭載する



3 システム概念図

4 ゴミの識別方法について

機械学習と深層学習

AI(Artificial Intelligence)

知的行動を人間に代わってコンピュータに 行わせる技術

機械学習

大量のデータから、規則性や関連性を見つ け出し、判断や予測を行う手法

深層学習

多層構造アルゴリズム 「ディープニューラルネットワーク」 を用い、特徴の設定や組み合わせをAIが自 ら考えて決定する

4 ゴミの識別方法について

学習方法の違い

機械学習

- 特徴を人間が定義する必要がある
 - 様々な色のリンゴがある場合、人間が 色に着目して区別させる指示を行う

深層学習

- マシン側で自動的に特徴を抽出する
 - 着目すべきポイントの指示がいらない
 - 言語で特徴を定義するのが難しい場合に 高い効果を発揮する

案内方法

カメラにゴミをかざすと、ゴミの周りにフレーム 及びゴミ箱への軌道を表示する

使用した技術

信頼度スコア:

物体を正確に認識して いるかを判断する値

正確に認識している: 1 認識していない: 0

10

学習手順 ①学習に使用する画像の収集

各100枚

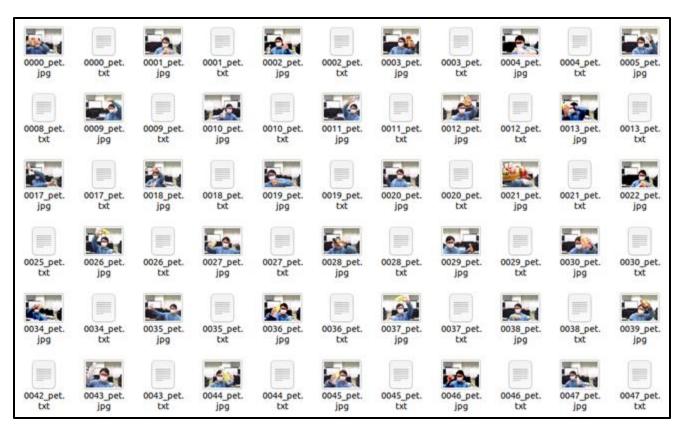
ぼかし,明るさ調整して 水増し

各600枚

学習手順 2

②学習画像を加工する

使用したツール: LabelImg

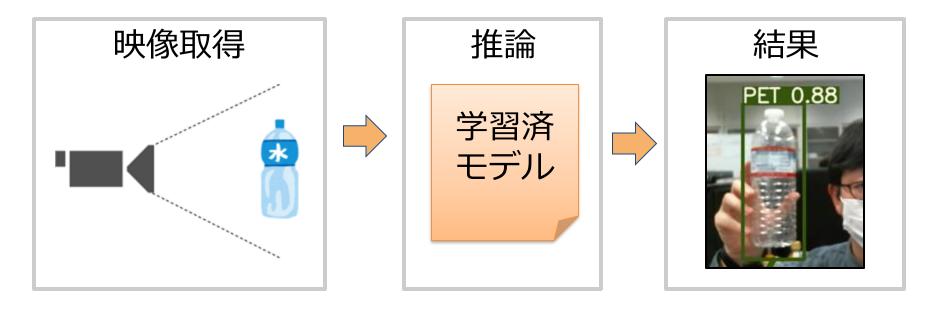

アノテーション:

画像内の対象物の領域を手動で囲む作業のこと

12

学習手順 3

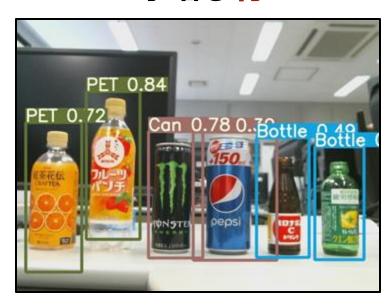
③学習して学習済モデルを作成


学習済モデル

学習手順

④学習済モデルを使用し物体を認識

リアルタイム映像からゴミを認識


学習データの水増し有無とゴミの認識

水増し無

- 誤認識が発生している
- 信頼度が0.9に近い

水増し有

- 正確に認識できている
- 信頼度が低い

「正確に認識できている」<u>水増し有</u>を採用

イベントの概要

ゴミ箱利用者が 【一一一 となり、

町に現れた怪獣を ゴミ を捨てることによって 撃退 する

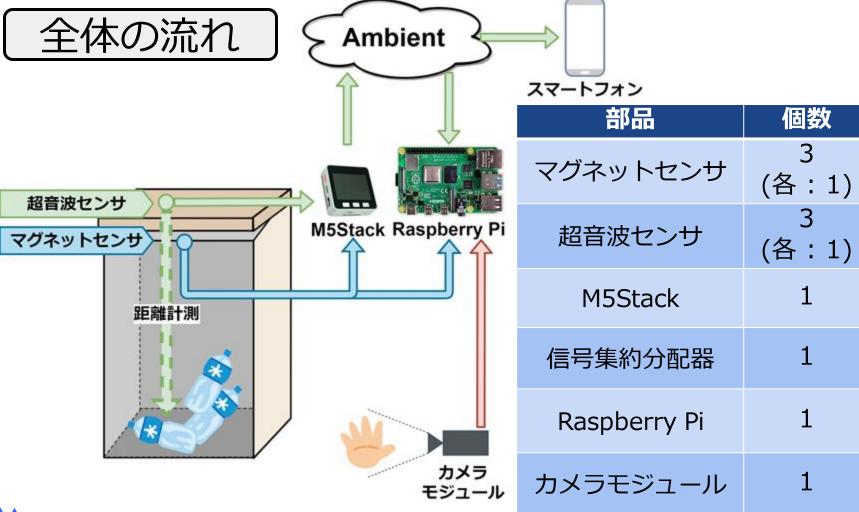
イベント動作の流れ

利用者がゴミを捨てる

ゴミ箱の蓋が閉じる

ゴミ箱の内容量を計測

ゴミの量によって 各種イベント発生 待機画面



攻擊

手の形状を認識してパワーを ためたあとで攻撃する! 17

ハードウェア部分

7 デモンストレーション

動作環境

	os	メモリ	開発言語
ゴミ案内	Ubuntu 20.04	32GB ※	Python3
イベント処理	RaspberryPi OS	4GB	Python3

※ 学習工程で使用したPCはメモリ96GBを使用

8 まとめ

成果

解決目標

- ①AI等の技術を使用し、ゴミの分別を促進
- ②ゴミの分別の仕方を楽しく学べるイベントの実装
- ③アプリを使用し、回収作業に役立つ機能の搭載

成果

- ①ゴミを捨てるべき箱の案内を実装
- ②手の認識を活用したアニメーションを**実装**
- ③Webにアクセスすることでゴミの容量を確認**可能**

8 まとめ

今後の課題

	課題	解決案
ゴミ案内	誤検出、誤認識して しまうことがある	学習画像の質と量の再検討
イベント処理	手の形状を誤認識して しまうことがある	撮影環境の見直し、 アルゴリズムの再検討
ゴミ回収 アプリケーション	回収作業に役立つ レイアウトになっていない	アプリケーション開発

